

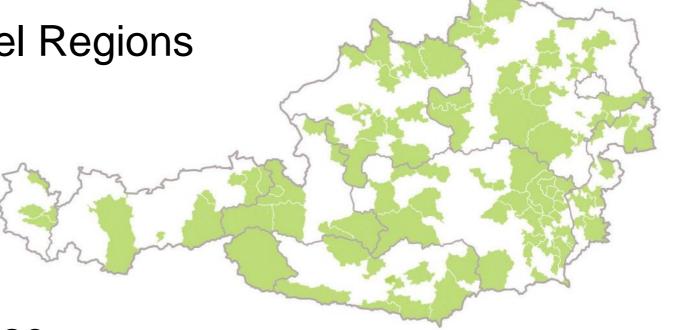
# Intangible benefits of energy efficiency in Energy Regions in Austria

M.M.C. Fritz – Junior researcher and PhD candidate R.J. Baumgartner – Professor for Sustainability Management and Head of the Institute of Systems Sciences, Innovation and Sustainability Research



## AU case-study




#### **Characteristics:**

99 Climate and Energy Model Regions

- 899 communities
- 2.5 million citizens

#### **Activities and goals:**

- Increase renewable energy use
- Regional energy
- Energy autonomy
- → e-mobility, PV, hydropower, renovation
- → Multi-level case-study





## Benefits and assessment



#### AU case-study: EE activities in (99) Energy Regions in the country

| Level       | Benefits                                     | Impacts/Assessment                                                                                                    |
|-------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Environment | Energy savings                               | <ul> <li>Increased energy efficiency standards</li> <li>Trade-off: barrier for increasing renovation rates</li> </ul> |
|             | Energy delivery                              | <ul> <li>Investment in more efficient technologies and grids</li> </ul>                                               |
|             | <ul> <li>Resources<br/>management</li> </ul> | Better knowledge of regional resources                                                                                |
|             | <ul> <li>Local air pollution</li> </ul>      | Linked to energy delivery                                                                                             |



## Benefits and assessment



#### AU case-study: EE activities in (99) Energy Regions in the country (continued)

| Level     | Benefits                                       | Impacts/Assessment                                                                                                                |
|-----------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Social    | <ul> <li>Health and well-<br/>being</li> </ul> | <ul> <li>Benefits of renovating a school on the grades of pupils</li> <li>Contributing to a better environment</li> </ul>         |
|           | Employment                                     | <ul> <li>Job creation/increased activity in various<br/>sectors, e.g., construction, consulting,<br/>awareness raising</li> </ul> |
| Political | <ul> <li>Energy security</li> </ul>            | <ul> <li>Becoming self-sufficient = one of the main<br/>goals</li> </ul>                                                          |
|           | <ul> <li>Macro-economic<br/>impact</li> </ul>  | Related to employment and public budget                                                                                           |
|           | <ul> <li>Public budget</li> </ul>              | <ul> <li>Subsidies schemes</li> </ul>                                                                                             |



## Other benefits



#### Higher acceptance for technological changes

• Awareness raised on energy savings & EE (Hecher et al., 2016)

#### Development of sustainable business models

- Financial incentives to decrease energy demand
- Decentralization (Binder et al., 2016)

#### Increased social value of the region (Hecher et al., 2016)

- Stronger identification to city/region
- Networking energy experts, public administration, researchers, households
- Mutual learning, cooperation, awareness raising

#### Success motivate non ER to become one

(Workshop, 2015)





## Conclusions

- EIA benefits + additional ones
- Importance of stakeholder engagement
- Importance of local regulations/standards
- ESCOs = 1 stakeholder that can also influence the transition towards EE
- Choosing the right arguments for the right audience





## References

Binder, C.R., Knoeri, C., Hecher, M., 2016. Modeling transition paths towards decentralized regional energy autonomy: the role of legislation, technology adoption, and resource availability. Raumforschung und Raumordnung. DOI 10.1007/s13147-016-0396-5

Hecher, M., Vilsmaier, U., Akhavan, R., Binder, C.R., 2016. An integrative analysis of energy transitions in energy regions: A case study of ököEnergieland in Austria. Ecological Economics, 121, 40-53.

Knoeri, C., Goetz, A., Binder, C.r., 2014. Generic bottom-up building-energy models for developing regional energy transition scenarios.

Klima- und Energie-Modellregionen, 2016. Climate and Energy Model Regions
An Austrian blueprint for a successful bottom-up approach in the field of climate change and energy.
Retrieved from:

http://www.klimaundenergiemodellregionen.at/images/doku/2016factsheet\_climateandenergymodelregions2016\_en.pdf (accessed 2 July 2016).





### Contact

## Institute of Systems Sciences, Innovation and Sustainability Research

Merangasse 18/I, 8010 Graz

morgane.fritz@uni-graz.at

rupert.baumgartner@uni-graz.at

