Jornada: PROGRAMA PAREER II. PRINCIPALES NOVEDADES

Cómo mejorar la eficiencia energética del edificio a través de la envolvente térmica

21 de Febrero de 2018

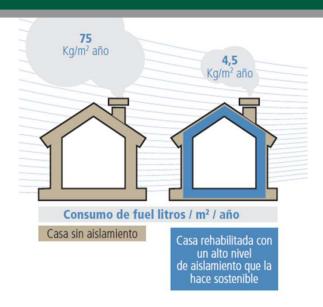
INTRODUCCIÓN

→ ANDIMAT: Asociación Nacional de Fabricantes de Materiales Aislantes

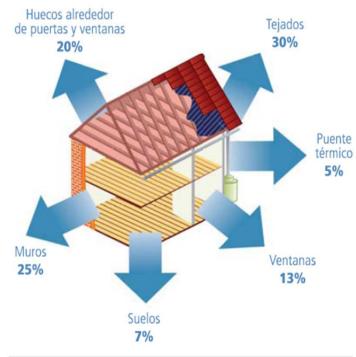
Fabricantes de aislamientos térmicos y acústicos para la

construcción y la industria

→ Asociaciones: AIPEX, ANAPE, IPUR, ANFAPA -SATE, Fabricantes de espumas flexibles, otros (vidrios, marcos, productos de sellado, PYL,...) 250 asociados



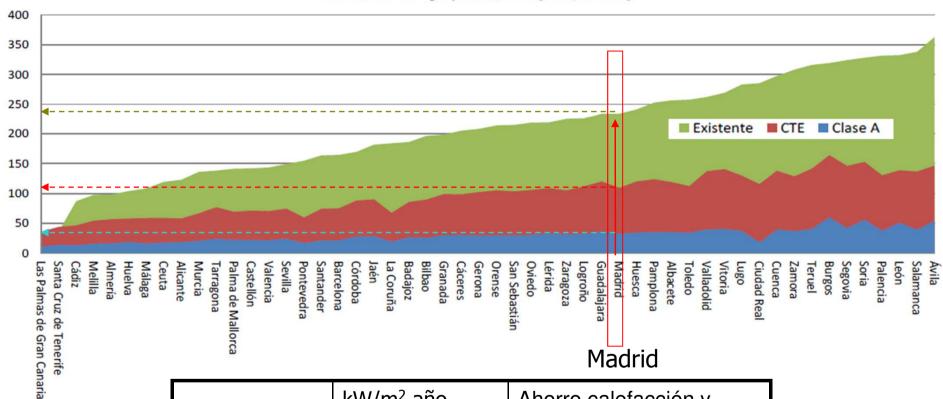
Eficiencia energética en edificios (envolvente)



Consumo energético en edificios

Los edificios mal aislados pierden la energía que les proporcionamos en % diferentes a lo largo de su envolvente. Un edificio rehabilitado térmicamente puede llegar a consumir hasta un 90% menos de energía que el mismo sin aislamiento

PÉRDIDAS ENERGÉTICAS EN EL EDIFICIO



CERTIFICACION ENERGÉTICA DE EDIFICIOS EXISTENTES

Consumo de energía primaria C+R [kWh/m²-año]

	kW/m².año	Ahorro calefacción y refrigeración
Existente	240	
CTE-2006	110	53%
Clase A	30	87%

AISLAR TU VIVIENDA ES TU INVERSIÓN MÁS RENTABLE

Dónde están: www.andimat.es

Zona 8

C850 3R

Zonas climáticas analizadas

Nº de viviendas en miles por zonas climáticas

		Severi	Severidad climática de Verano					
	Población	1	2	3	4	TOTAL		
ad ca no	Α	-	-	3.462	386	3.849		
rid áti ieri	В	-	-	8.144	2.898	11.042	8.144	18%
Severidad Climática Invierno	С	5.233	5.403	2.328	2.273	15.237	10.636	24%
၂၈ ၂	D	1.672	2.837	8.277	-	12.786	8.277	19%
	E	1.195	-		-	1.195		
	TOTAL	8.100	8.240	22 11	5.558	44.109		61%

CASO 1 y 5

ZONA D3 (Madrid).

1. Caso 1: Objetivo

EDIFICIO

CTE- HE-1 2006

 U_{M} 0,66

U_C 0,38

U_H 3,2

 U_S 0,47

Demanda energética

- Calefacción
- Refrigeración

Costes Aislamiento

CTE HE1 -2013

$$D_{CAL,Lim} = D_{cal,base} + \frac{F_{cal,sup}}{Sup}$$

D cal, límite

28,1 kWh/m².año

D ref, límite

15 kWh/m².año

Apéndice E del CTE HE1 -2013

U_M 0,27

U_C 0,22

U_H 1,5

 U_S 0,34

Demanda energética

- Calefacción

- Refrigeración

Costes Aislamiento

CALENER

Se compara

€

kW/h m².año

Premisas simulación

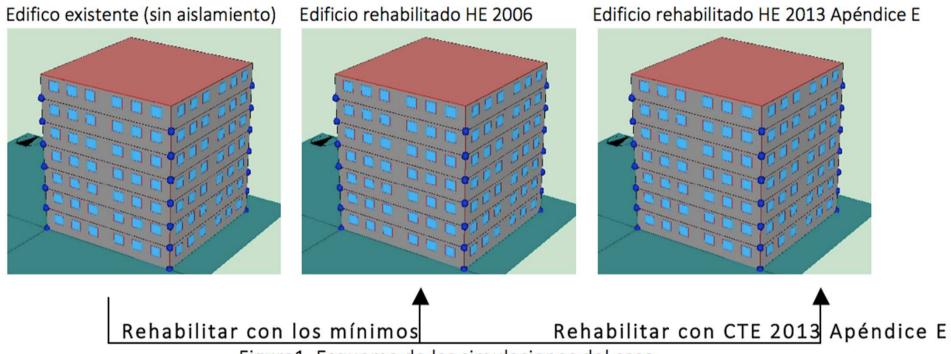
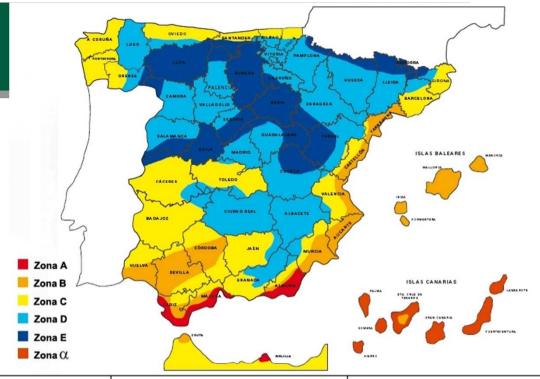
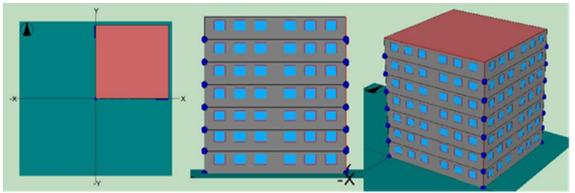



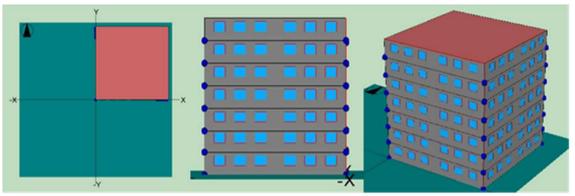
Figura1. Esquema de las simulaciones del caso



DB-HE1 2006 vs 2013

	Cubi	ertas	Fachadas		Suelos	
Zona climática	2006	2013	2006	2013	2006	2013
α	6	6	2	2	5	5
Α	6	6	2	6	5	6
В	6	9	3	8	5	7
С	7	14	3	11	5	9
D	8	15	4	12	5	10
E	9	17	5	13	6	11

Descripción edificio cerramientos verticales



CERRANGENTO	Edificio	Existente		HE-1 2013 mínimos	CTE DB-HE-1 2013 Apéndice E	
CERRAMIENTO VERTICAL	Valor U (W/m².K)	R _{AT} (m ² .K/W)	Valor U (W/m².K)	R _{AT} (m².K/W)	Valor U (W/m².K)	R _{AT} (m².K/W)
	1,5	0	0,66	1,5	0,27	3,2
DIVISORIOS INTERIORES	1,9	0	0,75	1,25	0,75	1,25
HUECOS DE FACHADA	5,7	Marco Al Vidrio monolítico	3,3	Marco RPT UVA 4-6-4	1,5	Marco PVC UVA-ATR 4-16-4

Descripción edificio cerramientos horizontales

CERRAMIENTO	Edificio I	Edificio Existente		IE-1 2013 mínimos	CTE DB-HE-1 2013 Apéndice E	
HORIZONTAL	Valor U (W/m².K)	R _{AT} (m².K/W)	Valor U (W/m².K)	R _{AT} (m².K/W)	Valor U (W/m².K)	R _{AT} (m².K/W)
SOLERA	2,1	0	0,47	1,85	0,34	2,65
FORJADOS	2,1	0	1,2	0,4	0,75	1
CUBIERTA	1,7	0	0,38	1,9	0,21	4,1

Valoración económica

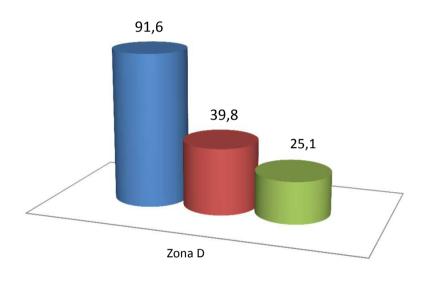
Cerramiento	Mínimos HE- 2013	HE- 2013 Apéndice E	Diferencia
Fachada	119.135 €	133.367 €	14.232 €
Huecos de fachada	51.051 €	82.046 €	30.995 €
Solera	3.943 €	5.131 €	1.188 €
Cubierta	25.200 €	31.200 €	6.000 €
Coste total edifico	195.386 €	246.613 €	52.414 €
Coste total por vivienda	8.141 €/viv.	10.276 €/viv.	2.135 €/viv.

Premisas simulación

Renovaciones hora constantes de 0,8 h⁻¹ para HE2006 y HE2013

Equipo de rendimiento constante de calefacción empleando gas natural con un rendimiento del (0,7) y refrigeración empleando electricidad con un rendimiento de 2,6.

Los precios empleados son los precios promedio de los planes renove de ventanas y fachadas que gestionó ANDIMAT y bases de datos Colegio Oficial de Aparejadores y Arquitectos Técnicos de Guadalajara.

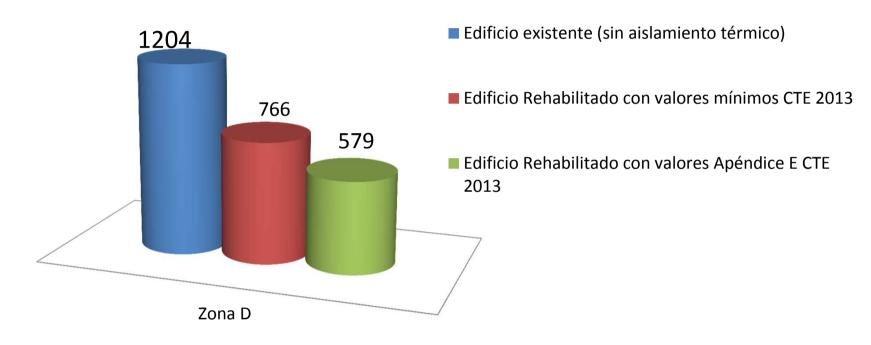

Los puentes térmicos para el edificio existente y rehabilitado con los mínimos los que vienen por defecto en CALENER

2. Resultados

Demandas de calefación en kWh/m2 año

- Edificio existente (sin aislamiento térmico)
- Edificio Rehabilitado con valores mínimos CTE 2013
- Edificio Rehabilitado con valores Apéndice E CTE 2013

Consumo energía primaria en kWh/m2 año



CTE 2013** - puentes térmicos tratados++

Resultados

Coste total Energía (€/viv) al año

Ahorro en la factura energética	Coste rehabilitación mínimos HE2013	Coste rehab. Apéndice E HE2013	Diferencia
al mes	36 €/viv.	52€/viv.	16 €/viv.

2. Caso 5: Resultados

Zona D3	Aisl. Min.	Aisl. Min.	Ap. E CTE
Demanda de calefacción en kWh/m2.año	91	40	25
Demanda de refrigeración en kWh/m2.año	8	9	7
Calificación	E	С	С

Tratamiento de los puentes térmicos

	Ap. E sin PT		Apendice	E* PT+	Aislamien	ito mín.
Forjados	Ψ	fs	Ψ	fs	Ψ	fs
Encuetro forjado	0,18	0,82	-0,03	0,88	0,41	0,76
Enc. suelo ext fachada	0,20	0,84	0,19	0,82	0,46	0,74
Enc. Cub fachada	0,20	0,84	0,19	0,82	0,46	0,74
Cerramiento vertical						
Esquina saliente	0,16	0,81	0,02	0,66	0,16	0,81
Hueco de ventana	0,20	0,76	0,04	0,77	0,27	0,64
Esquina entrante	0,13	0,84	-0,13	0,84	0,13	0,84
Pilar	0,08	0,87	0,08	0,87	0,77	0,64
Contacto terreno						

Transmitancia térmica lineal ψ (W/mK) de puentes térmicos y factor de temperatura superficial f_{RSI}

Conclusiones de la simulación

CONCLUSIÓN 1: hay que Ir más allá de lo mínimo reglamentario

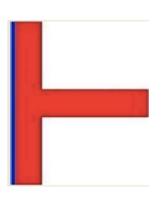
CONCLUSIÓN 2: La capacidad aislante toda la fachada se triplica

CONCLUSIÓN 3: El aislamiento necesario en los suelos aumenta un 40%

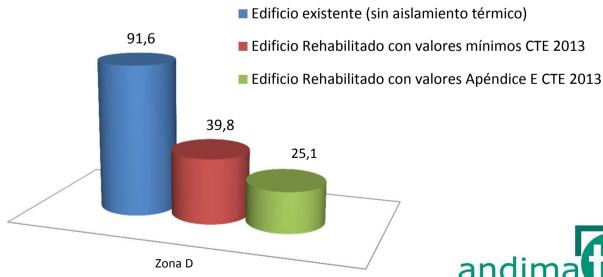
CONCLUSIÓN 4: El aislamiento necesario en la cubierta se duplica

CONCLUSIÓN 5: El incremento en coste de aislamiento de la envolvente conforme al CTE 2013 respecto al mínimo es del orden del 25% (equivalente a 2.800 €/vivienda)

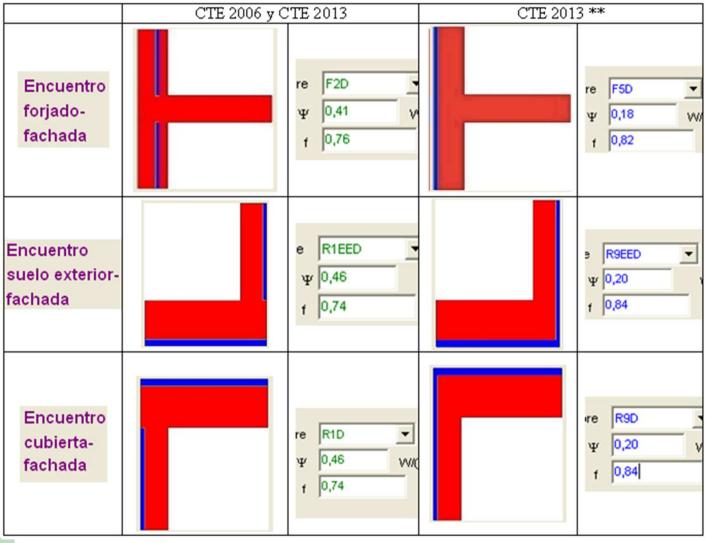
<u>CONCLUSIÓN 6</u>: La rehabilitación con valores de U similares a los exigidos a edificios nuevos supone un ahorro energético superior al 50% y supone una amortización de este extra-coste en menos de cinco años.



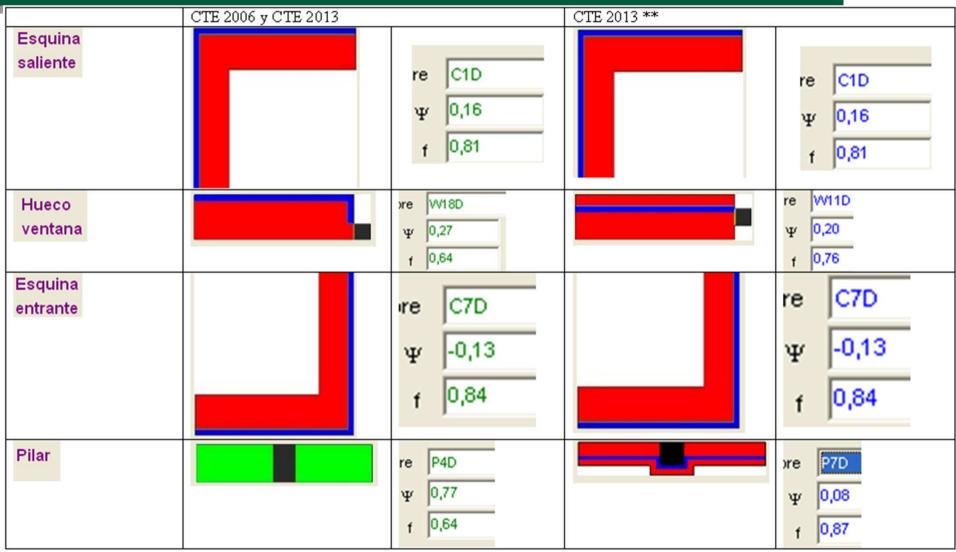
Efecto de los puentes térmicos


Resultados CALENER/LIDER	Edificio sin AT	CTE 2013 sin tratarP	Apendice E HE1 201:
Demanda de calefacción en kWh/m2.	91	31	25
Demanda de refrigeración en kWh/m2			
Calificación	E	-	С

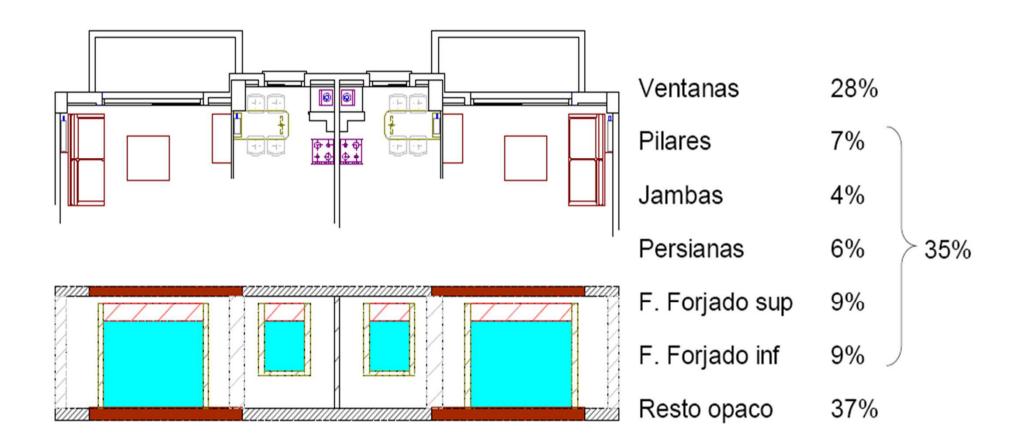
La influencia de los puentes térmicos a medida que se limita la demanda energética en el edificio representa aproximadamente el 20% de las pérdidas del edificio



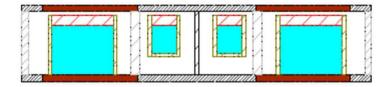
Demandas de calefación en kWh/m2 año


Puentes térmicos forjados

Transmitancia térmica lineal ψ (W/mK) de puentes térmicos y factor de temperatura superficial f_{RSI}


1. Caso 2: Puentes térmicos cerramiento vertical

Transmitancia térmica lineal ψ (W/mK) de puentes térmicos y factor de temperatura superficial f_{RSI}


Puentes térmicos

Puentes térmicos

Situación "Normal"

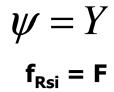
Elementos superficales	S	U	S*U	%
Parte "opaca"	34,78	0,45	15,65	17,54
Ventanas	13,65	3,3	45,05	50,49
TOTAL	60,69	68,03		

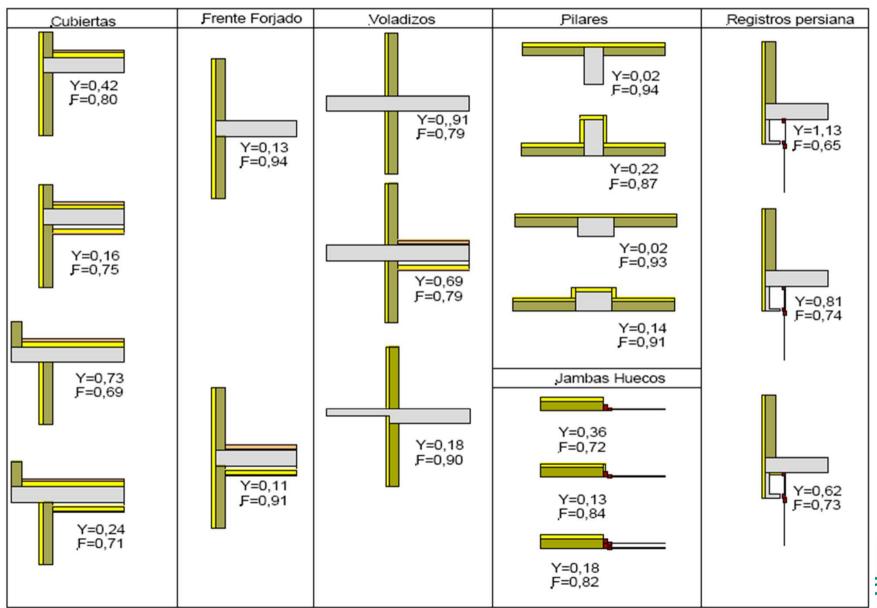
Puentes termicos Integrados	L	Ψ	L*Ψ	%
Pilares	10,8	0,02	0,216	0,24
Contono Hueco	15,3	0,36	5,508	6,17
Persianas	7,4	1,13	8,362	9,37
TOTAL	14,09	15,79		

Puentes termicos de encuentro	L	Ψ	L*Ψ	%
Frente forjado superior	14,9	0,42	6,258	7,01
Frente forjado inferior	6,9	0,13	0,897	1,01
Frente forjado voladizo	8	0,91	7,28	8,16
TOTAL			14,44)	16,18
TOTAL			8 9,2 1	
U medio parte opaca			1,27	

Situación "PT "tratados""

Elementos superficales	S	U	S*U	%
Parte "opaca"	34,78	0,45	15,65	21,71
Ventanas	13,65	3,3	45,05	62,50
TOTAL			60,69	84,22


Puentes termicos Integrados	L	Ψ	L*Ψ	%
Pilares	10,8	0,02	0,216	0,30
Contono Hueco	15,3	0,13	1,989	2,76
Persianas	7,4	0,62	4,588	6,37
TOTAL			6,79	9,43


Puentes termicos de encuentro	L	Ψ	L*Ψ	%
Frente forjado superior	14,9	0,16	2,384	3,31
Frente forjado inferior 6,9		0,11	0,759	1,05
Frente forjado voladizo	8	0,18	1,44	2,00
TOTAL			4.58	6,36
TOTAL			72,07	
U medio parte opaca			0,78	

Puentes térmicos: Aislamiento exterior

Valoración económica

Aplicación del Programa de ayudas del IDAE para la rehabilitación energética de edificios existentes del sector residencial (uso vivienda y hotelero) PAREER a este edificio

	Coste rehabilitación mínimos HE2013	Coste rehabilitación Apéndice E HE2013	Diferencia
Coste de la Rehabilitación sin	195.386 €	246.613 €	51.227€
IVA (coste elegible)	8.141 €/viv.	10.276 €/viv.	2.135 €/viv.
Ayuda PAREER (30 + 5 % del	58.616 €	86.315 €	15.368 €
coste elegible)	2.442 €/viv.	3.596 €/viv.	640 €/viv.
Coste de la rehabilitación con la ayuda del PAREER	136.770€	160.298 €	35.859€
	5.699 €/viv.	6.679 €/viv.	1.494 €/viv.
Inversión inicial por rehabilitar	27.354 €	49.323 €	7.172 €
toda la envolvente (10% IVA + 10% coste elegible)	1.140 €/viv.	2.055 €/viv.	299 €/viv.
Cuantía financiable	117.232 €	135.637 €	18.406 €
Cuota mensual a 12 años a un tipo de 0% + Euribor	838 €	970€	132 €
	35 €/viv.	41 €/viv.	5,50 €/viv.
Ahorro en la factura energética al mes	36,50 €/viv.	52 €/viv.	-

Valoración económica

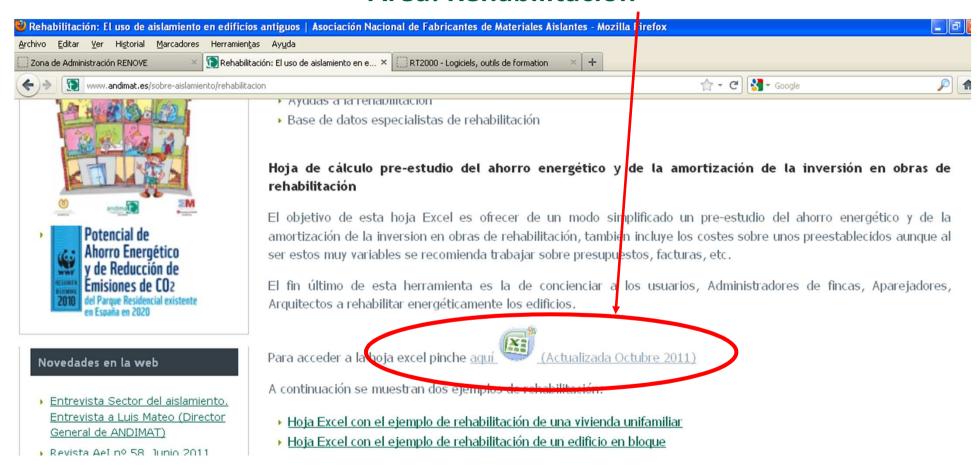
Mayor Confort «Nuevo» edificio

- Revalorizado
- mejora calificación

Menor gasto de energía Coste de oportunidad

Conclusiones

- Todas las actuaciones de rehabilitación la envolvente térmica de los edificios deberían realizarse con valores más exigentes que los mínimos indicados en el CTE
- Los incrementos de aislamiento en la parte ciega suponen incrementar los espesores de aislamiento entre 2 y 3 veces propuesto por el CTE y duplicar las prestaciones térmicas de los cerramientos acristalados. Estos incrementos podrían verse aumentados caso de no tratar adecuadamente los puentes térmicos.
- La rehabilitación del edificio empleando los valores del apéndice E del CTE 2013 respecto al edificio existente, produce un ahorro energético en la factura de más de la mitad.
- Mejorar el aislamiento de la envolvente es la medida con mejor relación coste beneficio, ya que una vez instalado los ahorros producidos son constantes a lo largo de la vida útil del edificio y no requieren mantenimiento.


Pre-estudio de rehabilitación energética de edificios

Pre-Estudio – Hoja Excel

Web: www.andimat.es Área: Rehabilitación

Pre-Estudio – Hoja Excel

Excel Pre-estudio del ahorro energético y de la amortización de la inversión en obras de rehabilitación energética

altura

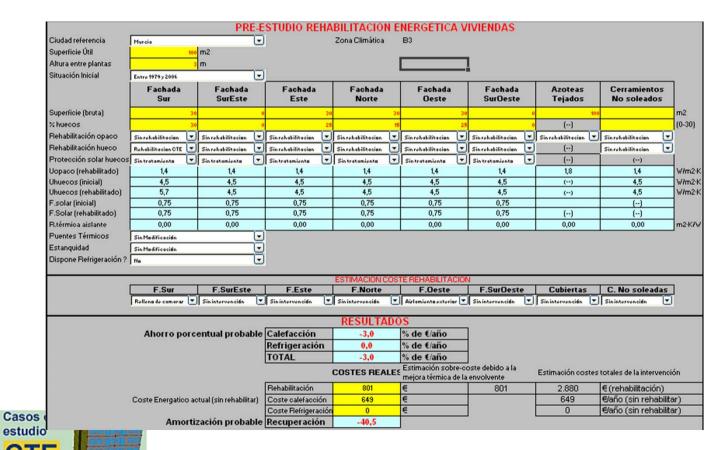
superficie

Año construcción...

Propuestas de rehab. Envolv.

% Ahorro Factura

Ciudadanos, administradores de fincas, prescriptores


Promover la rehabilitación a todos los niveles

Pre-Estudio de ahorro energético para rehabilitación de la envolvente en edificios

- Método muy simplificado
- Calcula amortización de la inversión en obras de rehabilitación
- Incluye los costes estimados

MUCHAS GRACIAS

Y recordad....

EL AISLAMIENTO ES "SEXY"

Barack Obama, 15 de Diciembre de 2009, al Congreso de los EEUU

<u>www.andimat.es</u> <u>ymasso@andimat.es</u>

